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Dosingwith Independent Skew-Normally 

Distributed Random Components 
Mohammad Masjkur, HenkFolmer 

 
Abstract— Random parameter models have been found to better predict the optimum dose of fertilization than fixed parameter models.  
However, a major restriction of this class of models is that the random parameter components are normallydistributed. This paper 
introduces random parameter models of fertilizer dosing withindependent skew-normallydistributedrandom componentsusing Bayesian 
estimation.  We compare the Linear Plateau, Spillman-Mitscherlich, and Quadratic random parameter models with random parameter 
componentswith different distributions, i.e. the Skew-normal, Skew-t, Skew-slash, and Skew-contaminated normal distributions and also 
their counterparts, i.e., the normal, Student-t, slash and the contaminated normal distributions,with the errors following symmetric normal 
independent distributions.  The method is applied to a dataset of multi-location trials of potassium fertilization of soybeans. The results 
show that the Student-t Spillman-Mitscherlich Response Model is the best model for soybean yield prediction. 

Keywords—Bayesian estimation, Dose-response model, Random parameter model, Skew-normal independent distributions. 
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1 INTRODUCTION 
ERTILIZATION experimental data are typically 
multisite or multiyear data of different doses of 
fertilizer applied.A common modeling approach is to fit 

a general quadratic form to the data by means of least 
squares under the assumption of a fixed effects model with 
independent normally distributed random error term with 
constant variances [1], [2]. However, this approach is 
unrealistic because it neglectsthe variability that usually 
exists between sites or years. 

An alternative model is the mixed effects approach[3], 
[4], [5], [6]. This approach allows the parameters to have a 
random effect component that represent between sites or 
years variability. The random parameter models have been 
found to outperform the fixed parameter models to model 
dose-response relationships[5],[7], [8]. Furthermore, the 
quadratic functional form commonly used is not always the 
best model. Tumusiime et al. [7] and [9] showed that the 
stochastic linear plateau model and the Mitscherlich 
exponential type functions outperform the quadratic form. 
In a similar vein, [8] showed that the stochastic linear 
plateau function is more adequate than the stochastic 
quadratic plateau function for corn response to Nitrogen 
fertilizer. 

The random parameter components and the errors are 

usually taken as normally distributedrandom variables [5],  
[6], [7], [8]. However, the normality and 
symmetryassumptionsmay be too restrictive because in 
practice departures from normality is common. 
Particularly,[10] and [11] concluded that field crop yield 
distributions are in general non-normal or non-lognormal. 
The degree of skewness and kurtosis vary by crop type and 
the amount of nutrients uptake. In addition, (random) 
weather effects could result in positively or negatively 
skewed probability functions. Therefore, [12] suggested the 
beta distribution for the random parameter component of 
the linear plateau function of wheat response to Nitrogen 
fertilizer.Furthermore, [13] found that skew normal 
distribution of the random parameter component 
outperform the normality assumption. 

Lachos,Ghosh, and Arellano-Valle[14] advocated the use 
of the Skew-normal independent distribution for robust 
modeling of linear mixed models.  The Skew-normal 
independent distributionisa class of asymmetric, heavy-
tailed distributions that includes the Skew-normal 
distribution,Skew-t, Skew-slash  and the Skew-
contaminated normal distributions. The class of Skew-
normal distributions accomodateobservations with high 
skewness and heavy tails as well as the normal distribution. 

Traditionally, fertilizer-dose response modelsare 
estimated by means of maximum likelihood estimation 
(ML)[5], [6], [7], [8].    However, for nonlinear modelsand 
small sample sizes ML is frequently biased[15].  In addition, 
convergence can be a problem even with careful scaling 
and good starting values.  Bayesian estimation is an 
alternative to ML.  The advantages of Bayesian estimation 
arethat the results are valid in small samples and that 
convergence in the case of nonlinear models is not an issue 
[12],[15], [16]. 

The purpose of this paper is Bayesian estimation of 
random parameter dose (fertilization)-response (yield) 
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models for yield data that is Skew-normally independently 
distributed. 

The paper is organized as follows.  In Section 2, we 
introducethe general normal mixed response model,briefly 
discuss the class of Skew-Normal Independent (SNI) 
distributions and presentthe SNI-Mixed Model (SNI-MM).  
Section 3summarizesBayesian inferenceandintroduces 
model comparison criteria.  Section 4 describesthe soybean 
yield dataset and the response functions.  Section 5 
presentsthe results and the conclusionsfollow in Section 6. 

2  MIXED EFFECTS MODEL AND SKEW NORMAL 
INDEPENDENT DISTRIBUTIONS 

2.1  TheNormal Mixed Effects Model  
In general, a Normal mixed effects model reads: 
Yi = η(ϕi , Xi) + ϵi , ϕi = Aiβ + Bibi,  (1) 
with 
(bi, ϵi) Nni +q~ 

ind �0, Diag(Σ, σe
2Ini )�, 

where the subscript i is the subject index, i = 1, … . . , n; Yi =
(yi1, … , yin i )

T  is ani  × 1 vector of niobserved continuous 
responses for subject 
i, ηi(ϕi , Xi) = {η(ϕi , Xi1), … , η�ϕi , Xin i �} T  with η(. ) the 
nonlinear or linear function of random parameters ϕi , and 
covariate vector Xi, Ai  and Bi are known design matrices of 
dimensions ni  × p and ni  × q, respectively, β is the p × 1 
vector of fixed effects, bi  is theq × 1 vector of random 
effects, and ϵi  is the ni  × 1 vector of random errors, andIn i  
denotes the identity matrix.  The matrices Σ = Σ(α) with 
unknown parameter α is the q × q unstructured dispersion 
matrix of bi, σe

2 the unknown variance of the error 
term.When η(. ) is a nonlinear parameter function, we have 
the Normal NonLinear Mixed Model (N-NLMM); if η(. ) is 
a linear parameter function, we have the N-Linear Mixed 
Model (N-LMM).  

It follows that  
bi Nq~ 

ind  (0, Σ)andϵi Nni~ 
ind  (0, σϵ

2Ini ) 
andthat they are uncorrelated; since Cov(bi, ϵi) = 0[17], [18]. 

2.2  Skew-Normal Independent (SNI) Distributions  
A skew-normal independent distribution is defined as the p-
dimensional random vector y =  μ +  U1 2⁄ Z, where μ is a 
location vector,  Z a multivariate skew-normal random vector 
with location vector 0, scale matrix Σ and skewness parameter 
vector λ, i.e.  Z ∼  SNp (0, Σ, λ)[14]. Furthermore,U is a positive 
weight random variable with cumulative distribution function 
(cdf) H(u|v) and probability density function (pdf) h(u|v), v  is a 
scalar or vector of parameters indexing the distribution of the 
scale factorU.Given U, Y follows a multivariate skew-normal 
distribution with location vector 0, scale matrix u−1Σ and 
skewness parameter vector λ, i.e., Y|U = u ∼ SNp (μ, u−1Σ,
λ).Thus, the SNI distributions are scale mixtures of the skew-
normal distributions denoted by Y ∼ SNIp (μ, Σ, λ, H).The 

marginal pdf of Y is  

f(y) = 2 � ϕp (y; μ, u−1Σ)Φ �u1 2⁄ λTΣ−1 2⁄ (y − μ)� dH(u|v),
∞

0
 

The class of skew-normal independent distributionsis a 
group of asymmetric heavy-tailed distributionsof robust 
alternatives to the routinely used of normal distributionsfor 
mixed effects models[19, 20, 21, 22].A convenient stochastic 
representation of Y, follows from [20], [21]: 
Y = μ + ∆T + Γ1 2⁄ T1,    (2) 
whereΔ = Σ1 2⁄ δ, Γ = Σ1 2⁄ (I − δδT)Σ1 2⁄ = Σ − ΔΔT, I denotes 
the identity matrix and 

δ = λ/(1 + λTλ)1/2, λ = (Γ+ΔΔ T )−1 2⁄ Δ

[1−ΔT �Γ+ΔΔ T �−1
Δ]1 2⁄ , Σ = Γ + ΔΔT, T =

|T0|, T0 ~ N1(0, 1) and T1 ~ Np�0, Ip �. 
When λ = 0, the class of SNI distributions reduces to the 

classof thick-tailed normal independent (NI) distributions[18], 
[23], [24]. The probability density function(pdf) is f0(y) =
∫ ϕp (y; μ, u−1Σ)dH(u|v),∞

0 denoted asY ∼  Np (μ, Σ, H). 

2.3. The SNI-Mixed Effects Model 
Using the general framework (1), the general SNI-Mixed 
Model (SNI-MM) is defined as: 
bi ∼

iid SNIq (0, Diag(Σ), λ, H)andϵi ∼
ind NIni �0, σe

2Ini , H�, 
i = 1, … . . , n. 

where the random effects are assumed to have a multivariate 
SNI distribution and the random errors are assumed to have a 
NI distribution. 

3 BAYESIAN INFERENCE 
3.1 Prior Distributions and Joint Posterior Density  
Below, we apply a Bayesian framework based on the 
Markov Chain Monte Carlo (MCMC) algorithm to infer 
posterior parameter estimates.Using (2), thegeneral mixed 
model can be formulated in hierarchical form for i =
1, … . . , n, as follows: 
Yi|bi , Ui = ui ~

ind .Nni �η(Aiβ + Bibi, Xi), ui
−1σe

2Ini �. 
bi|Ti = ti , Ui = ui ~

ind .Nq(Δti , ui
−1Γ). 

Ti|Ui = ui  ~
ind .HN1(0, ui

−1). 
Ui ~

iid .H(ui|v). 
whereHN1(0, σ2) is the half-N1(0, σ2) distribution, Δ = Σ1/2δ 
and Γ = Σ − ΔΔT , with δ = λ/(1 + λTλ)1/2 and Σ1/2 the 
square root of Σ containing q(q + 1)/2 distinct elements 
[18],[20],[25]. 

Let Y = (y1
T, … , yn

T)T , b = (b1
T, … , bn

T)T , u = (u1, … , un )T , 
t = (t1, … , tn )T . Then the complete likelihood function 
associated with (yT, bT, uT, tT)T , is given by  
L(θ|Y, b, u, t) ∝
∏ [ϕni �yi; η(Aiβ + Bibi, Xi), ui

−1σe
2Ini �ϕq(bi; Δti , ui

−1Γ)n
i=1 ×

 ϕ1(ti; 0, ui
−1)h(ui|v)]. 

Tocomplete the Bayesian specification, we need to 
specify prior distributions for all the unknown parameters 
θ = (βT, σe

2, αT, λT, vT)T . We takeβ~Np �β0, Sβ �, σe
2~IG(τe/

2, Te/2), Γ~IWq (Tb, τb ), Δ~Np (Δ0, SΔ )[18], [20].Forvwe take 
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v~Exp(τ 2⁄ )𝕀𝕀(2,∞)for the Skew-t (St) model,  Gamma(a, b) 
for the Skew-slash (SSL) model.  Furthermore,U(0, 1) for 
v1and  Beta(ρ0, ρ1) for  v2 for the Skew-contaminated 
normal (SCN) model. 

Assuming independency for the parameter vector, the 
joint prior distribution of all unknown parameters is  
π(θ) = π(β)π(σe

2)π(Γ)π(Δ)π(v). 
Combining the likelihood function and the prior 

distribution, the joint posterior density of all unknown 
parameters is  
π(β, σe

2, Γ, Δ, b, u, t|y)

∝  �[ϕni �yi; η(Aiβ
n

i=1

+ Bibi, Xi), ui
−1σe

2Ini �ϕq (bi; Δti , ui
−1Γ) 

× ϕ1(ti; 0, ui
−1)h(ui|v)]π(θ). 

3.2 Model Comparison Criteria 
The expected Akaike information criterion (EAIC) and the 
expected Bayesian information criterion (EBIC) are a deviance-
based measure appropriate for Bayesian model selection[26], 
[27].Let θ and Y = (y1, … , yn )T  be the entire model parameters 
and data, respectively. DefineD (θ) = −2lnf(y|θ) =
−2 ∑ lnf(yi|θ)N

i=1 , where f(yi|θ) is the marginal distribution of 
yi.Then E [D (θ)] is a measure of fit and can be approximated 
by using the MCMC output in a Monte Carlo simulation. This 
measure isobtained as given by D� = 1

K
∑ D(θ(k))K

k=1 .  Where 

θ(k)is the kth iteration of MCMC chain ofthe model and K is the 
number ofiterations. 

The EAIC andEBIC define as follows  
EAIC� = D� + 2pandEBIC� = D� + p log(N), 
whereD� is the posterior mean of the deviance, p is the number 
of parameters in the model,N is the total number of 
observations.These criteria penalizing models with more 
complexity.Smaller value of EAIC and EBIC indicate a better 
fit[20]. 

4CASE STUDY 
4.1  Data 
The datasetis obtained from 19 multi-location trials of 
potassium fertilization of soybeans. The experiments were 
carried out between 2002 and 2014.  The soil types are Ultisols, 
Inceptisols, Vertisols, and Oxisols with soil potassium contents 
varying from very low to very high. Common soybean 
varieties were used.Each experimentsconsisted of five levels of 
potassium fertilization.  The doses applied were 0, 40, 80, 160 
and 320 kg ha-1 of KCl .The plots were 6 by 5 m, or 4 by 5 
marranged in a randomized complete block design with three 
to nine replications. The response variable was soybean yield 
(t ha-1). The yields reported are averagesover replications[28], 
[29], [30], [31]. 

4.2 Response Functions 
We consider three response functions: the Linear Plateau (LP), 

the Spillman-Mitscherlich (SM) and the Quadratic functions 
(Q).  

The stochastic LPisdefined as follows: 
Yi = min�α1 + (α2+b2i)Xi;  μp + b3i� + b1i + εi  (3) 
where forlocationi, Yi   is the soybean yield;Xi  the potassium 
fertilizer dose; α1 the intercept parameter; α2 the linear 
response coefficient; up  the plateau yield; b1i , b2i ,and b3i  are 
the random effects; and εi  is the random error term.  In term of 
(1),= (α1, α2, α3)Tbi = (b1i, b2i , b3i)T ; bi ∼

iid SNIq (0, Σ, λ, H) and 
ϵi ∼

ind NIni �0, σe
2Ini , H�.  

The stochastic SM reads: 
Yi = β1 − (β2 + b2i) exp  ((−β3 + b3i) Xi) + b1i + εi  (4) 
whereβ1 is the maximum yield attainable by potassium 
fertilization; β2  is the yield increase; β3 is the ratio of 
consecutive incrementsof the yield; all other parameters, 
variables and distributions as in (3).  

The stochastic Q isdefined as: 
Yi = γ1 + (γ2 + b2i)Xi + (γ3 + b3i)Xi

2 +  b1i + εi  (5) 
where γ1  is the intercept parameter whose position (value) 
can be shifted up or down by the random effect b1i ; γ2 is the 
linear response coefficient with random effect parameter b2i ; 
γ3  is the quadratic response coefficient whose position can be 
shifted up or down by the random effectb3i ;γ = (γ1,
  γ2,  γ3T;all other variables and distributions as in (3)[7], [8], 
[9]. 

4.3 Statistical Analysis 
The dataset was used to identify the model with the best fit 
among the random parameter models of fertilizer dosing.  The 
models differed with respect to the distributionsof the random 
effects and random errors.  Specifically: 
Model 1: Skew-normal distribution for the random effects and 

Normal distribution for the random errors (SN-N) 
Model 2: Skew-t distribution for the random effects and t 

distribution for the random errors (St-t) 
Model 3: Skew-slash distribution for the random effects and 

slash distribution for the random errors (SSL-SL) 
Model 4: Skew-contaminated normal distribution for the 

random effects and contaminated normal 
distribution for the random errors (SCN-CN). 

Model 5: Normal distribution for the random effects and 
random errors (N-N) 

Model 6: t distribution for the random effects and random 
errors (t-t) 

Model 7: Slash distribution for the random effects and slash 
distribution for the random errors (SL-SL) 

Model 8: Contaminated normal distribution for the random 
effects and contaminated normal distribution for the 
random errors (CN-CN). 

The following independent priors were considered to 
perform the Gibbs sampler, αk ~N(0, 103),βk ~N(0,
  103,γk ~N0,  103, σ2~ IG0.1, 0.1,Γ~ IG0.1, 0.1,Δ~ N0, 0.001, 
and v ~ Exp(0.1)I(2, )for the skew-t and t-model; 
v ~ Gamma(0.1,0.01)for the skew-slash model and slash 
model;ν1 ~ Beta(1, 1) and ν2 ~ Beta (2, 2) for the skew-
contaminated normal and contaminated normal model. 

For each of the models, we ran three parallel independent 
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chains of the Gibbs sampler of50 000 iterations for each 
parameter with thinning of 5 and initial burn in of 25 000.  
However, for the SSL-SL and SCN-CN model, convergence 
was achieved at 75 000 iterations.  We monitored chain 
convergence using trace plots, autocorrelation plots and the 
Brooks-Gelman-Rubin scale reduction factor (R�)[32].  To avoid 
non-convergence, we normalized the original doses 
(subtracted the mean and divided by the standard deviation) 
[33] which gave: -1.06, -0.70, -0.35, 0.35, and 1.76, respectively.  
We fitted the models using the R2jags package available in R 
[34].   

5  RESULTS AND DISCUSSION 
5.1  SoybeanYield Data 
Fig. 1 shows the histogram and normal Q-Q plot of soybean 
yield data while the boxplot is presented in Fig. 2.The figures 
indicate that soybean yield is non-normally distributed.  It is 
skewed with heavy-tails.  In particular, the Q-Q plot does not 
followa straight line,whilethe boxplot showsasymmetryand 
outliers.Thus, it seems appropriate to fit a skewed heavy-tailed 
model to the data. 

 

 
(a) 

 
(b) 

 
Fig. 1. Soybean yield data: (a) Histogram; (b) Normal Q-Q plot. 

 

 
 

Fig. 2.Boxplot of soybean yield data. 
 
5.2Linear Plateau Response Models 
Based on the EAIC and the EBIC in Table 1, we find that 
among  the SNI modelsthe Skew-t(St-t) Model gives the best 
fit, followed by the Skew-slash (SSL-SL), Skew-contaminated 
normal (SCN-CN) and Skew-normal (SN-N) Model.Among 
the NI models, the Student-t (t-t) Model gives the best fit, 
followed by the contaminated normal (CN-CN), slash (SL-SL), 
and normal (N-N) Model.  We furthermore find that the 
heavy-tailed distributions outperform the skew heavy-tailed 
ditributionsand the normal distributions, except for the Skew-t 
distribution.  However, the t-t Model outperforms the St-
tModel.  Moreover, the asymmetry parameters (λ1, λ2,  λ3) of 
Skew-t model are not significant.  Thus, the t-tModelis the best 
Linear Plateau Response Model. 

 
TABLE 1.THE LINEAR PLATEAU MODELS 

 
Parameter SN-N St-t SSL-SL SCN-CN 

Mean SD Mean SD Mean SD Mean SD 
α1 
α2 
µp 
σ2

ε 
d1 
d2 
d3 
λ1 
λ2 
λ3 
ν (ν1) 
ν2 

1.471 
29.193 
1.880 
0.020 
0.250 
49.074 
0.121 
0.056 
0.059 
0.175 

0.113 
19.320 
0.134 
0.004 
0.114 
237.868 
0.074 
0.467 
0.654 
1.036 

1.533 
29.417 
1.843 
0.015 
0.173 
30.677 
0.071 
-0.006 
0.005 
-0.007 
5.834 

0.143 
19.604 
0.217 
0.004 
0.089 
129.636 
0.045 
0.262 
0.338 
0.516 
3.018 

1.469 
29.657 
1.826 
0.013 
0.148 
30.903 
0.062 
-0.024 
-0.015 
-0.039 
2.846 

0.151 
19.531 
0.234 
0.004 
0.076 
121.481 
0.039 
0.265 
0.325 
0.529 
1.748 

1.509 
28.982 
1.882 
0.014 
0.160 
26.718 
0.069 
0.017 
0.003 
0.036 
0.473 
0.513 

0.159 
18.929 
0.246 
0.005 
0.093 
92.546 
0.046 
0.288 
0.367 
0.573 
0.265 
0.215 

EAIC 
EBIC 

-85.78 
-86.00 

 -98.03 
-98.28 

 -89.47 
-89.71 

 -88.35 
-88.61 

 

Parameter N-N t-t SL-SL CN-CN 
Mean SD Mean SD Mean SD Mean SD 
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α1 
α2 
µp 
σ2

ε 
d1 
d2 
d3 
ν (ν1) 
ν2 

1.473 
39.968 
1.878 
0.139 
0.467 
13.135 
0.306 

0.114 
20.482 
0.129 
0.014 
0.095 
11.964 
0.081 

1.555 
29.274 
1.853 
0.014 
0.374 
2.534 
0.241 
5.043 

0.109 
19.480 
0.111 
0.004 
0.098 
4.694 
0.074 
3.039 

1.482 
30.780 
1.854 
0.012 
0.355 
3.684 
0.227 
2.697 

0.110 
19.899 
0.122 
0.004 
0.085 
6.048 
0.068 
1.620 

1.521 
29.061 
1.867 
0.012 
0.340 
2.452 
0.227 
0.515 
0.450 

0.125 
19.030 
0.119 
0.006 
0.113 
3.937 
0.077 
0.253 
0.226 

EAIC 
EBIC 

-93.56 
-93.71 

 -104.91 
-105.09 

 -95.86 
-96.04 

 -97.21 
-97.41 

 

 
Table 1furthermore shows that for the t-tModel,all the fixed 

effects, i.e., the intercept parameter (α1), the linear response 
coefficient (α2), the plateau yield upand the random 
effects(d1, d2, d3)  are significant. 

5.3Spillman-Mitscherlich Response Models 
Based on the EAIC and EBIC in Table 2 we find the 
following rankings of the SNI and NI models: St-t <SSL-SL 

<SN-N <SCN-CN and t-t <N-N <SL-SL <CN-CN.  As in 
Section 5.2.we observe that the heavy-tailed 
distributionsoutperform the skew heavy-tailed 
distributions and that the asymmetry parameters 
(λ1, λ2,  λ3)  of St-tModel are not significant.It furthermore 
follows that the t-t Modelis the best Spillman-Mitscherlich 
Response Model. 

 
TABLE 2.THE SPILLMAN-MITSCHERLICH MODELS 

 
Parameter SN-N St-t SSL-SL SCN-CN 

Mean SD Mean SD Mean SD Mean SD 
β1 
β2 
β3 
σ2

ε 
d1 
d2 
d3 
λ1 
λ2 
λ3 
ν (ν1) 
ν2 

1.982 
0.073 
1.762 
0.013 
0.220 
0.005 
0.364 
0.008 
0.061 
0.006 

0.110 
0.025 
0.294 
0.003 
0.085 
0.005 
0.289 
0.101 
0.785 
0.105 

1.924 
0.059 
1.771 
0.010 
0.148 
0.004 
0.283 
-0.002 
-0.013 
-0.001 
5.413 

0.095 
0.033 
0.311 
0.003 
0.072 
0.002 
0.287 
0.071 
0.441 
0.086 
2.733 

1.949 
0.074 
1.699 
0.009 
0.133 
0.004 
0.275 
0.000 
0.003 
0.000 
3.197 

0.106 
0.036 
0.310 
0.003 
0.064 
0.002 
0.240 
0.069 
0.423 
0.067 
1.769 

1.960 
0.073 
1.740 
0.011 
0.170 
0.004 
0.315 
0.001 
0.004 
0.001 
0.317 
0.549 

0.109 
0.033 
0.313 
0.003 
0.077 
0.002 
0.269 
0.063 
0.434 
0.067 
0.235 
0.205 

EAIC 
EBIC 

-128.10 
-128.33 

 -144.88 
-145.13 

 -130.58 
-130.83 

 -127.70 
-127.96 

 

Parameter N-N t-t SL-SL CN-CN 
Mean SD Mean SD Mean SD Mean SD 

β1 
β2 
β3 
σ2

ε 
d1 
d2 
d3 
ν (ν1) 
ν2 

1.950 
0.032 
2.495 
0.104 
0.465 
0.008 
0.623 

0.111 
0.013 
0.415 
0.010 
0.087 
0.006 
0.199 

1.919 
0.054 
1.848 
0.009 
0.371 
0.053 
0.441 
4.754 

0.092 
0.021 
0.312 
0.003 
0.087 
0.012 
0.240 
2.731 

1.945 
0.069 
1.765 
0.009 
0.355 
0.051 
0.463 
3.139 

0.103 
0.024 
0.300 
0.003 
0.080 
0.012 
0.198 
1.735 

1.955 
0.067 
1.808 
0.010 
0.401 
0.052 
0.490 
0.321 
0.544 

0.106 
0.023 
0.305 
0.003 
0.086 
0.012 
0.222 
0.235 
0.203 

EAIC 
EBIC 

-147.72 
-147.88 

 -153.88 
-154.06 

 -138.45 
-138.63 

 -135.19 
-135.39 

 

 

For the t-t Model, the fixed effects, i.e., the maximum 
yield coefficient (β1), the increase in yield (β2), the ratio of 
successive increment (β3)and the random effects(d1, d2, d3) 

are significant. 
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5.4TheQuadratic Response Models 
Comparison of the EAIC and EBICin Table 3 leads to the 
following rankings: St-t < SSL-SL < SCN-CN < SN-N  andt-t < 
SL-SL <CN-CN <N-N.The results furthermore show that the 

heavy-tailed distributionsoutperform the skew normal and 
normal distribution, that the heavy-tailed distributionsare 
better than the normal ones and that overallthe t-t Modelisthe 
best Quadratic Response Model. 

 
TABLE 3.THE QUADRATIC MODELS 

 
Parameter SN-N St-t SSL-SL SCN-CN 

Mean SD Mean SD Mean SD Mean SD 
γ1 
γ2 
γ3 
σ2

ε 
d1 
d2 
d3 
λ1 
λ2 
λ3 
ν (ν1) 
ν2 

1.794 
0.506 
-0.389 
0.031 
0.203 
0.021 
0.018 
0.014 
0.026 
0.021 

0.126 
0.101 
0.101 
0.021 
0.233 
0.227 
0.232 
0.288 
0.699 
0.666 

1.810 
0.351 
-0.261 
0.016 
0.130 
0.008 
0.006 
0.000 
0.000 
0.000 
3.764 

0.088 
0.063 
0.059 
0.005 
0.066 
0.004 
0.005 
0.064 
0.267 
0.300 
1.335 

1.786 
0.401 
-0.298 
0.012 
0.096 
0.007 
0.005 
0.000 
-0.001 
-0.001 
1.682 

0.102 
0.080 
0.075 
0.005 
0.050 
0.004 
0.003 
0.065 
0.249 
0.277 
0.956 

1.788 
0.393 
-0.293 
0.014 
0.110 
0.007 
0.006 
0.000 
0.000 
-0.001 
0.365 
0.275 

0.101 
0.081 
0.074 
0.006 
0.064 
0.004 
0.003 
0.068 
0.257 
0.286 
0.165 
0.152 

EAIC 
EBIC 

-42.49 
-42.71 

 -91.03 
-91.27 

 -76.20 
-76.45 

 -73.51 
-73.78 

 

Parameter N-N t-t SL-SL CN-CN 
Mean SD Mean SD Mean SD Mean SD 

γ1 
γ2 
γ3 
σ2

ε 
d1 
d2 
d3 
ν (ν1) 
ν2 

1.796 
0.510 
-0.386 
0.033 
0.445 
0.046 
0.030 

0.107 
0.072 
0.072 
0.006 
0.085 
0.030 
0.022 

1.825 
0.330 
-0.246 
0.014 
0.327 
0.082 
0.072 
2.516 

0.079 
0.056 
0.052 
0.005 
0.085 
0.023 
0.019 
1.329 

1.783 
0.398 
-0.297 
0.011 
0.297 
0.075 
0.066 
1.617 

0.096 
0.072 
0.067 
0.005 
0.074 
0.020 
0.017 
0.868 

1.788 
0.391 
-0.292 
0.014 
0.315 
0.077 
0.068 
0.366 
0.265 

0.096 
0.076 
0.069 
0.006 
0.092 
0.021 
0.018 
0.160 
0.141 

EAIC 
EBIC 

-45.32 
-45.47 

 -104.44 
-104.62 

 -83.22 
-83.40 

 -80.59 
-80.79 

 

 

For the t-tModel,all the fixed effects, i.e., the intercept 
parameter (γ1), the linear response coefficient (γ2), the 
quadratic response coefficient (γ3), and the variance 
component (d1, d2, d3) are significant. 

5.5Comparingthe Linear Plateau, Spillman-
Mitscherlich and Quadratic Models 

Comparing the Linear Plateau (LP), Spillman-

Mitscherlich(SM) and Quadratic (Q) models under eight 
distributional assumptions, we find that the t-tSpillman-
Mitscherlich model has the smallest EAIC and EBIC values 
among the competing models indicating that this is the best fit 
model for the soybean yield data (Table 4).  The correlation 
between observed and fitted values is significant at the 0.01 
level  (r=0.984**) (Fig. 3). 

 
TABLE 4.COMPARISON OF LP, SM AND Q MODELS 

 
Distribution LP SM Q 

EAIC EBIC EAIC EBIC EAIC EBIC 
SN -85.78 -86.00 -128.10 -128.33 -42.49 -42.71 
St -98.03 -98.28 -144.88 -145.13 -91.03 -91.27 
SSL -89.47 -89.71 -130.58 -130.83 -76.20 -76.45 
SCN -88.35 -88.61 -127.70 -127.96 -73.51 -73.78 
N -93.56 -93.71 -147.72 -147.88 -45.32 -45.47 
Student-t -104.91 -105.09 -153.88 -154.06 -104.44 -104.62 
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SL -95.86 -96.04 -138.45 -138.63 -83.22 -83.40 
CN -97.21 -97.41 -135.19 -135.39 -80.59 -80.79 

 
 

 
Fig. 3.Fitted values vs observed values plot of Student-t SM 
model 

6CONCLUSION 
We investigated the performance of linear and nonlinear 
mixed response modelswith Skew normal independent 
(SNI) and normal (NI) distributions of random effects.  We 
applied the Bayesian estimation framework to a dataset of 
multi-location trials of potassium fertilization of soybeans.  
We compared the Linear Plateau, Spillman-Mitscherlich, 
and Quadratic random parameter models with different 
distributions of the random parameter component, i.e. the 
Skew-normal, Skew-t, Skew-slash, and Skew-contaminated 
normal distributions and also theirsymmetric counterparts, 
i.e., the normal, Student-t, slash and the contaminated 
normal distributions with the errors following symmetric 
normal independent distributions.   

The overall results showed that for all three models of 
fertilizer dosing, the heavy-tailed distributions and skew 
heavy-tailed distributionsoutperform the normal and skew 
normal distributions.  Furthermore, the heavy-tailed 
distribution approach performed better than the skewed 
version.  The best model for soybean yield predictionturned 
out to be the Student-tSpillman-Mitscherlich Response 
Model. 

REFERENCES 
[1] G.E. Sain and M.A. Jauregui, “Deriving Fertilizer 

Recommendations with a Flexible Functional Form,” Agronomy 
J., vol. 85, pp. 934-937, July-August 1993.   

[2] J. Shen, R. Li, F. Zhang, Z. Rengel and C. Tang, ” Orthogonal 
Polynomial Models to Describe Yield Response of Rice to 
Nitrogen and Phosphorus at Different Levels of Soil 
Fertility,”Nutrient Cycling in Agroecosystem,vol.65, pp. 243–
251,2003. 

[3] D. Wallach, “Regional Optimization of Fertilization Using a 

Hierarchical Linear Model,” Biometrics,vol.51,pp. 338–346,1995. 
[4] D. Makowski, D. Wallach and J.M. Meynard,” Statistical 

Methods for Predicting the Responses to Applied N and for 
Calculating Optimal N Rates,” Agronomy J.,vol. 93, pp. 531–
539,May-June 2001. 

[5] D. Makowski and D. Wallach, ”It Pays to Base Parameter 
Estimation on a Realistic Description of Model Errors,” 
Agronomie, vol.22, pp. 179–89,2002. 

[6] D. Makowski and M. Lavielle,” Using SAEM to Estimate 
Parameters of Response to Applied Fertilizer,”J. Agricultural 
Biological and Environmental Statistics,vol. 11, pp. 45-60, 2006. 

[7] E. Tumusiime, B.W.Brorsen, J. Mosali, J. Johnson, J. Locke  and 
J.T. Biermacher,” Determining Optimal Levels of Nitrogen 
Fertilizer Using Random Parameter Models,” J. Agricultural and 
Applied Economics,vol. 43, no. 4, pp. 541–552,Nov. 2011. 

[8] C.N. Boyer, J.A. Larson, R.K. Roberts, A.T. McClure, D.D. Tyler 
and V. Zhou, “Stochastic Corn Yield Response Functions to 
Nitrogen for Corn after Corn, Corn after Cotton, and Corn after 
Soybeans,” J. Agricultural and Applied Economics,vol. 45, no. 4, 
pp. 669-681, Nov. 2013. 

[9] S.C. Park, B.W.Brorsen, A.L. Stoecker and J.A.Hattey,”Forage 
Response to Swine Effluent: A Cox Nonnested Test of 
Alternative Functional Forms Using a Fast Double Bootstrap,” 
J. Agricultural and Applied Economics,vol.  44, no. 4, pp. 593–
606,Nov. 2012. 

[10] H.R. Day, “Probability Distributions of Field Crop Yields,” J. 
Farm Economics,vol. 47, no. 3, pp. 713-741,Aug. 1965. 

[11] O.A. Ramirez, S. Misra and  J. Field,” Robust Linear Mixed 
Models with Normal/Independent Distributions and Bayesian 
MCMC Implementation,” American J. Agricultural 
Economics,vol. 85, no. 1, pp. 108-120,Feb. 2003. 

[12] F.B. Ouedraogo and B.W.Brorsen, “Bayesian Estimation of 
Optimal Nitrogen Rates with A Non-Normally Distributed 
Stochastic Plateau Function,” the Southern Agricultural 
Economics Association (SAEA) Annual Meeting, Dallas, Texas, 
Feb. 2014. 

[13] C.N. Boyer, B.W. Brorsen, E. Tumusiime, “Modeling Skewness 
with the Linear Stochastic Plateau Model to Determine Optimal 
Nitrogen Rates,”Agriultural Economics, vol. 46,pp. 1-10,2015. 

[14] V.H.Lachos, P. Ghosh and R.B.Arellano-Valle, “Likelihood 
Based Inference For Skew-Normal Independent Linear Mixed 
Models,“Statistica Sinica,vol. 20,pp. 303-322, 2010. 

[15] B.W.Brorsen, “Using Bayesian Estimation and Decision Theory 
to Determine the Optimal Level of Nitrogen in Cotton,” the 
Southern Agricultural Economics Association (SAEA) Annual 
Meeting, Orlando, Florida, Feb. 2013. 

[16] M. Masjkur and H. Folmer, “Bayesian Estimation of Linear 
Mixed Response Models of Skew-Normally Distributed 
Stimuli: Evidence from Monte Carlo Simulation,” Proc. Basic 
Science 6, pp. 372–376,2016. 

[17] V.H. Lachos, D. Bandyopadhyay, D.K. Dey,  “Linear and 
Nonlinear Mixed-Effects Models for Censored HIV Viral Loads 
Using Normal Independent Distributions,” Biometricsvol. 67, 
pp. 1594-1604, Dec. 2011. 

[18] V.H.Lachos, L.M. Castro and D.K. Dey,“Bayesian Inference in 
Nonlinear Mixed-Effects Models Using Normal Independent 
Distributions.”  Computational Statistics and Data Analysis,vol. 
64, pp. 237–252,2013. 

[19] D. Bandyopadhyay, V.H.Lachos, C.A. Abanto-Valleand P. 
Ghosh,“Linear Mixed Models For Skew-Normal/Independent 
Bivariate Responses With An Application To Periodontal 
Disease,”Stat. Med.vol. 29, pp. 2643–2655, Aug. 2010. 

[20] D. Bandyopadhyay, V.H.Lachos,L.M. Castro, and D.K. Dey, 
“Skew-Normal/Independent Linear Mixed Models for 

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4

Fi
tte

d 
Va

lu
es

Observed Values 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016                                                                                        844 
ISSN 2229-5518 

IJSER © 2016 
http://www.ijser.org 

Censored Responses with Applications to HIV Viral Loads,” 
Biometrical J.,vol. 54, no. 3, pp. 405–425,2012. 

[21] D. Bandyopadhyay, L.M. Castro,V.H.Lachosand H.P. Pinheiro, 
“Robust Joint Non-Linear Mixed-Effects Models and 
Diagnostics for Censored HIV Viral Loads with CD4 
Measurement Error.” J.Agricultural Biological and Environmental 
Statistics,vol. 20, no. 1, pp. 121–139, 2015. 

[22] Y. Huang, R. Chen, G. Dagne, Y. Zhu and H. Chen, “Bayesian 
Bivariate Linear Mixed-Effects Models with Skew-
Normal/Independent Distributions, with Application to AIDS 
Clinical Studies,”J. Biopharmaceutical Statistics,vol. 25, pp. 373-
396,2015. 

[23] K. Lange and J. Sinsheimer, “Normal/Independent 
Distributions and Their Applications In Robust Regression,”J. 
Computational and Graphical Statistics,vol. 2, no. 2, pp. 175–198, 
Jun. 1993. 

[24] G.J.M. Rosa,  C.R. Padovani, and D.Gianola,” Robust Linear 
Mixed Models With Normal/Independent Distributions And 
Bayesian MCMC Implementation,” Biometrical J., vol. 45,  no. 5, 
pp. 573–590, 2003. 

[25] V.H.Lachos, D.K. Dey and V.G. Cancho, “Robust Linear Mixed 
Models with Skew-Normal Independent Distributions from a 
Bayesian Perspective,” J. Statistical Planning and Inference,vol. 
139, pp.4098-4110,2009. 

[26] R.B. Arellano-Valle, H.Bolfarine and V.H. Lachos,“Bayesian 
Inference for Skew-Normal Linear Mixed Models,”J. Applied 
Statistics,vol. 34,no. 6, pp. 663-82, 2007. 

[27] T. Baghfalaki and M. Ganjali,”A Bayesian Approach For Joint 
Modeling of Skew-Normal Longitudinal Measurements and 
Time to Event Data,”REVSTAT – Statistical J.,vol. 13, no. 2, pp.  
169–91, June 2015. 

[28] M.T. Sutriadi and D. Nursyamsi, ”Pemilihan Metode Ekstraksi 
Hara K di Ultisols, Inceptisols, dan Vertisols untuk Kedelai. 
Makalah Seminar Nasional Sumberdaya Lahan.  Puslitbangtanak, 
Bogor, pp. 283-295, 2002. 

[29] D. Nursyamsi, M.T. Sutriadi and U. Kurnia,”  Penentuan 
Kebutuhan Pupuk Kalium untuk Kedelai pada Typic 
Kandiudoxs Berdasarkan Prosedur Uji Tanah”,J. Tropical 
Soils,vol. 10, no. 4, pp. 1-9,2004. 

[30] D. Nursyamsi,” Kebutuhan Hara Kalium Tanaman Kedelai di 
Tanah Ultisols”,Jurnal Ilmu Tanah dan Lingkunganvol. 6,no. 2, 
pp. 71-81,2006. 

[31] M. Masjkur and W. Hartatik,“Pengembangan Rekomendasi 
Pemupukan P dan K pada Kedelai Berbasis Model”, Laporan 
Penelitian Institusi, Institut Pertanian Bogor, 2014. 

[32] A. Gelman, J. Carlin and D. Rubin, Bayesian Data Analysis. New 
York:Chapman & Hall/CRC, pp. 294-310, 2006. 

[33] M. Kéry, Introduction to WinBUGS for Ecologists: A Bayesian 
approach to regression, ANOVA, mixed models and related 
analyses.Amsterdam, The Netherlands:Academic Press Elsevier 
Inc., pp. 145-150,2010. 

[34] Y. S. Su and M. Yajima, R2jags: A package for running jags from 
R,R package version 0.5-7, 2015. 

 
 
 
 IJSER

http://www.ijser.org/

	1 Introduction
	2  Mixed Effects Model and Skew Normal Independent Distributions
	2.1  TheNormal Mixed Effects Model
	2.2  Skew-Normal Independent (SNI) Distributions
	2.3. The SNI-Mixed Effects Model

	3 Bayesian Inference
	3.1 Prior Distributions and Joint Posterior Density
	3.2 Model Comparison Criteria

	4Case Study
	4.1  Data
	4.2 Response Functions
	4.3 Statistical Analysis

	5  Results and Discussion
	5.1  SoybeanYield Data
	5.2Linear Plateau Response Models
	5.3Spillman-Mitscherlich Response Models
	5.4TheQuadratic Response Models
	5.5Comparingthe Linear Plateau, Spillman-Mitscherlich and Quadratic Models

	6Conclusion
	References



